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Abstract. Adjective understanding is crucial for answering qualitative
or subjective questions, such as “is New York a big city”, yet not as
sufficiently studied as answering factoid questions. Our goal is to project
adjectives in the continuous distributional space, which enables to answer
not only the qualitative question example above, but also comparative
ones, such as “is New York bigger than San Francisco?”. As a basis, we
build on the probability P (New York—big city) and P (Boston—big city)
observed in Hearst patterns from a large Web corpus (as captured in a
probabilistic knowledge base such as Probase). From this base model,
we observe that this probability well predicts the graded score of adjec-
tive, but only for “head entities” with sufficient observations. However,
the observation of a city is scattered to many adjectives – Cities are
described with 194 adjectives in Probase, and, on average, only 2% of
cities are sufficiently observed in adjective-modified concepts. Our goal
is to train a distributional model such that any entity can be associated
to any adjective by its distance from the vector of ‘big city’ concept. To
overcome sparsity, we learn highly synonymous adjectives, such as big
and huge cities, to improve prediction accuracy. We validate our finding
with real-word knowledge bases.

Keywords: Adjective understanding · Commonsense knowledge · Word
embedding

1 Introduction

In recent years, database and search engines have shown the effectiveness in
answering quantitative questions on entities, such as “what is the population of
New York”. However, they are still limited in answering qualitative or subjec-
tive questions, often represented in adjective, such as “is New York a big city?”
or “is New York bigger than San Francisco”. This gets even harder for more
subjective adjectives such as “is New York beautiful?”. Adjectives, by modify-
ing or elaborating the meaning of other words, are studied in linguistics [6] to
play important roles in determining the semantic orientation of attributes, but
existing computational approaches have the following limitations.
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(a) KB baseline (Probase) (b) DS baseline (GloVe) (c) Ours

Fig. 1. The relation between population and the score of “big city”. In (b) and (c),
the size of circle is proportional to the population of the city

Existing work focuses on mining textual patterns to identify if ‘New York’
is frequently observed with ‘big city’ in Hearst patterns, like ‘big city such as
New York’ and ‘New York is a big city’, defining an is. A relationship between
New York and big city. Specifically, Probase [19] knowledge base (KB) captures
P (New York|big city) from a large web corpus, which we adopt as KB baseline.
However, in this KB, concept city is modified by 194 adjectives, such that textual
observations of New York are scattered over these adjective-modified concepts.
Such scattering makes lesser known, or tail entities, to be scarcely observed
especially in adjective-modified concepts, which we call a observation sparsity
problem – if Urbana is not observed in the ‘big city’ pattern, does this mean it
is not big or simply unobserved?

Trummer et al. [17] alleviate this problem by extending observations to
include not only positive isA patterns, but also negative isA patterns such as
‘Urbana is not a big city’. They use a provided threshold to map the given entity
and adjective pair, into positive state or negative state (binary condition). How-
ever, this still cannot handle the sparsity of entities observed in neither polarity.
Iwanari et al. [9] later generalize the binary classification into an ordering, using
textual patterns as evidences.

We summarize the limitations as follow:

– Observation sparsity: As New York can be associated with virtually infi-
nite adjectives, only few head entities are sufficiently observed in adjective-
modified concepts. (For example, New York is observed as a big city, but may
not be observed as a large city).

– Human intervention: Existing work requires human intervention to decide
a score threshold or provide human-generated ordering as training data. Our
goal is to give a graded score without human intervention, to not only classify
whether it is big, but also to compare how big it is with respect to another
entity.

Our first goal is thus to overcome observation sparsity, by answering “Is
New York a big city?” even when no Hearst co-occurrence pattern is observed.
A naive solution is adopting an existing distributed word representation
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technique, of using a big corpus as input and, by unsupervised learning, dis-
tributing words that have similar meaning in the near continuous space. In
Skip-gram model [13], word is represented into a vector to well predict con-
text words defined as a surrounding slide window. Recently, GloVe [14] trains a
distributional space combining the local and global model, which we adopt as
DS baseline. This model relaxes the sparsity by not being restricted to Hearst
patterns.

Our second goal is to train a graded score without human supervision. To
illustrate current limitations, Fig. 1(a) and (b) show KB and DS baseline results
for ordering cities to answer questions such as “Is X a big city?”. KB baseline
successfully grades the degree of “big city” (the bigger circle suggests higher
population), but includes only a few head entities actually observed in Fig. 1(a).
Meanwhile, though DS baseline overcomes the observation sparsity in Fig. 1(b)
by placing all cities in the space, close vectors to ‘big city’ are not necessarily
cities with higher population. Quantifying this failure requires a linear ordering
of all cities, which requires costly human-generated labels.

We combine the strength of the two models. First, we build on sparse but
highly precise Hearst patterns for training distributed word space. As a result,
we obtain Fig. 1(c) where the distance from big city preserves the correlation
with popularity. Meanwhile, DS baseline has higher recall but lower precision
by treating all co-occurrences as equal: Highly frequent co-occurrence of ‘big
city’ may include noisy words such as ‘where’, ‘like’, ‘small’. Second, we capture
the distributed similarity between adjective vectors. For example, as shown in
Fig. 1(c), big and huge cities are nearly synonymous, such that scattered obser-
vations from two concepts can be combined to enhance the correlation. In other
words, we can consider the distance to either vector (or the combination of the
two) to predict adjective grade more robustly.

We quantify the improved performance by comparing with a total order gen-
erated by attributes (for objective adjectives), or by a total ordering generated
by textual patterns (for subjective adjectives), as [17] confirms the quality of
such ordering. This enables to include up to 250 concepts and 500K entities in
evaluation.

2 Related Work

We categorize existing work for adjective understanding into implicit and explicit
modeling. Lastly, we describe how our work complements both approaches, and
describes other related attribute-related tasks.

2.1 Explicit Model

This approach considers textual patterns as explicit representation, to train a
graded adjective score. Probase [19] considers Hearst patterns to extract isA
relationship between concept and the given entity, observed from billions of
web documents. For our purpose of adjective understanding, we can consider
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Probase score for adjective-modified concepts, which we adopt as KB baseline.
Alternatively, Trummer et al. [17] consider both positive and negative isA pat-
terns, such as ‘New York is a big city’ and ‘Urbana is not a big city’, to train
a binary classifier given the ratio of positive and negative statements. Iwanari
et al. [9] use four textual patterns for finding various evidence between adjec-
tive and concept, aggregated into an ordering trained from supervised methods.
This ordering is evaluated against human-generated ordering, which limits the
scalability of evaluation. Our contribution is establishing Probase probability as
an ordering proxy, evaluating against data attributes (for objective adjective)
and missing probability (for subjective). WebChild Knowledge-Base [16] asso-
ciates entity with adjectives for fine-grained relations like hasShape, hasTaste,
evokesEmotion, etc.

The strength of explicit model in general is its high precision, but its weakness
is missing observation. However, as there are virtually infinite combinations of
adjective with concept, observations for adjective-modified concepts are typically
scarce, especially for lesser known entities, for which we cannot predict the score.

2.2 Implicit Model

Meanwhile, implicit approaches leverage a neural network model and large cor-
pus data to model latent semantic similarity between entities. For example,
the continuous bag-of-words model (CBOW) and the skip-gram model [12,13]
approaches predict semantic similarity between New York and Chicago based
on the similarity of surrounding words, such as mayor, city, population, etc. In
this space, the distance or similarity between every word can be calculated (or,
achieves high recall) even if the two words did not co-occur in sentence, and
the similarity will be high for two words with similar meaning. This helps infer
Chicago as a big city, even when it is not explicitly observed in the Hearst pattern
of “big city such as Chicago”, unlike New York being frequently observed.

Similarly, LSA [5] predicts two entities being similar, based on word co-
occurrence matrix. This model transforms a large co-occurrence matrix to low
dimensional vectors using a dimensional reduction technique. More recently,
GloVe [14] combines the strength of LSA and Skip-gram to train words into
the distributed space (DS), which we adopt as DS baseline. Huang et al. [8]
similarly predict similarity between query and document through deep learning,
but this line of approach shares a common weakness of compromising precision
for the increased recall.

Our goal is to increase recall without compromising precision. We thus use
high precision signals from explicit model to train a distributed entity space, then
infer missing scores based on its similarity with (possibly multiple synonymous)
adjectives.

2.3 Joint Model and Other Attribute Work

Existing joint approach of combining implicit and explicit models can be cate-
gorized into two directions: First, we can use explicit model as a supervision to
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train word embedding, such as syntactic or lexical knowledge [2,15] to improve
the quality of word embedding. Second, explicit knowledge can be projected onto
an embedding space [3,11,18], to enable the inference between relations. We take
the advantage of both approaches, by using explicit probability as supervision
for high-quality embedding, while projecting concepts in the space to enable the
inference of concept-concept or concept-entity similarity.

Our work is also related to attribute understanding, as adjective is often
viewed as a qualitative and subjective attributes describing the concept. First,
to understand a likely set of attributes describing the concept, [10] mines “the
[attribute] of [concept]” patterns. Proposed method derives attributes for mil-
lions of concepts and predicts the score of the attributes with regard to the
corresponding concepts. Second, to understand similar attributes, [7] discusses
how to automatically discover attribute synonyms to integrate hundreds of web
tables describing the same concept.

More recently, instead of textual data, several images of objects are used for
inferring the size or to predict whether the object is relatively big or small [1].
This work can capture graded property of size and complement our work, for
finding ‘big animal’ that can be captured in the photo, but not ‘big city’ which
cannot be photographed.

3 Proposed Model

This section first overviews existing approaches for quantifying the graded score
of the given entity for adjective-modified concepts. We then propose our app-
roach combining the strength of the two existing models.

3.1 Preliminary

Explicit Model. Probase [19] used a pattern-based method to estimate the
probability between the entity and its concept from billions of Web pages. We
selected only the adjective-modified concepts among various concepts in Probase
and used the probability as our score. The probability between concept and
entity was calculated by counting how frequently the pair of two word are found
in corpus, and can be defined as:

P (e|c) =
n(e, c)

∑
e′∈E(c) n(e′, c)

(1)

where e, c are respectively the entity and adjective-modified concept, E(c) is the
set of sub-entity of the adjective-modified concept c and n(e, c) is the num-
ber of times (e, c) discovered by Hearst pattern. In Probase data, when an
adjective-modified concept “big city” is given, the probability renders a cor-
rect size ordering, such as Chicago>London>Dublin> Washington DC, with
probability 3.82%, 3.58%, 1.42%, and 0.04% respectively. Though this signal
is highly precise, their coverage is limited – only 304 cities in USA (40.1%) are



Gradable Adjective Embedding for Commonsense Knowledge 819

observed in the Heart patterns with ‘big city’, though their probability score does
meaningfully correlate with actual population with correlation score 0.75. How-
ever, this does not cover the rest 60% of big cities of comparable population.
It is thus difficult to decide whether the unseen city is not big or simply
unobserved.

Implicit Model. GloVe constructs a word embedding by using word co-
occurrence data. This model trained co-occurred word vector as following
equation.

F (wi, w̃k) = exp(wi
T w̃k) = P (j|i) =

n(i, k)
n(i)

(2)

where wi is vector of word i, w̃k is separate vector of context word j, and P (j|i) is
the conditional probability that word j appear in the context of word i. F denotes
a function that encode two vectors to real value and is used as exponential
function in this model.

A naive adoption of implicit model is to train a Glove embedding and use the
distance of words from the adjective-modified concept, such as ‘big city. Such
a naive adoption has two limitations. First, co-occurrence is more prominent
with non-entity words, such as “like”, “where” and “small”, compared to which
co-occurrence with city entities forms a long tail. This would work as a noise
in generating a robust ordering among the city entities. Second, eliminating
non-entity words in the space modeling cannot solve the problem either, as
entity co-occurrence may bear different meanings as well. As [17] pointed out,
co-occurrence of ‘New York is a big city’ and ‘Urbana is not a big city’ reflects
the opposite meaning.

We discuss the joint modeling overcoming the limitations of the two models.

3.2 Embeddings for Adjectives

In semantic space represented as vectors, the distance or similarity between every
word can be calculated even when two words do not co-occur in corpus. However,
as training with simple co-occurrence is too noisy, we use Probase probability
into the vector cosine distance in the range of −1 to 1. Therefore, we propose a
model that uses word embedding and cosine distance to overcome sparsity and
binary classification problem.

Loss Function for Concept. The proposed model trains adjective-modified
concept into semantic word space by applying the scores to cosine similarity from
the entity vector, instead of Glove model using co-occurrence. Our objective is
thus to find the vector of adjective-modified concept satisfying the following
condition.

F (ve, vc) = P (e|c) (3)

where vc, ve ∈ Rd are the vectors of adjective-modified concept and its entity
respectively. A simple way to obtain F is by inner product:

F (ve, vc) = vc · ve + be = P (e|c) (4)
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where be is bias of entity. As we normalize entity vectors to have size 1, this
corresponds to the cosine similarity of vc and ve, being proportional to the prob-
ability P (e|c). Suppose P (New York|big city) is higher than P (Boston|big city).
Then we want to train the vector “big city” to be located closer to the vector,
“New York” than “Boston”. F by inner product is the same as linear regression
model. P (e1:n|c) are dependent variables of (n by 1), ve1:n are independent vari-
ables of (n by d) and vc is intercept of (d by 1), where n is the number of data,
d is the dimension of vector.

However, as motivated in Fig. 2, the frequency is showing a power-law dis-
tribution, such that F cannot fit the frequency very well. We show the errors in
Fig. 2(left), contrasting with how we can improve in the right figure.

0 20 40 60 80 100 120 140 160 180 200
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

P(e|c)
Linear

0 20 40 60 80 100 120 140 160 180 200
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

P(e|c)
Ours

(b) Ours(a) Linear Regression

Fig. 2. Error comparison of the two models

More specifically, we modify the equation such that the inner product of two
words in Eq. 2 equals to the “logarithm” of co-occurrence frequency showing
Fig. 2. In other words, we can train “exponential” of the inner product to refer
to the co-occurrence frequency as we reformulate as below:

F ′(vek
, vc) =

exp(ve · vc)∑
ek∈E(c) exp(vek

· vc)
= P (e|c) (5)

where E(c) is the entity set in concept c.
In Eq. 5, as the denominator is constant, P (ve|vc) is proportional to

exp(ve · ve). As a result, the entity vector placed closer to ‘big city’ can be
bigger. For satisfying Eq. 5, the loss function of proposed method is:

L(c) =
∑

ek∈E(c)

(

P (ek|c) − F ′(vek
, vc)

)2

(6)

Global Loss Function. To optimize loss function for all adjective-modified
concepts, a simple approach is minimizing

∑T
t=i L(ci), where T is the size of

whole adjective-modified concept. This function considers only positively labeled
data, as entities with high P (e|c) to adjective-modified concept c. However, due
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to the limitation of explicit model, it is unclear whether unlabeled data e′ /∈ E(c)
is missing because it is a negative evidence or simply unobserved.

To apply negative evidence, a naive method randomly samples some unla-
beled data as negative data. However, it may lead to false positive of selecting
unobserved big city as a negative label or insignificant effects by extracting
irrelevant data. To alleviate these problems, we firstly select entities which are
included in noun concept out of the adjective, but excluded in the adjective-
modified concept. For example, “Urbana” is included in “city” but excluded in
“big city”. And secondly, we weighted entities which likely to be more negative.
Our hypothesis is that, those entities that are frequently observed with city, but
not particularly with big city, are more likely not to be mentioned because it is a
negative evidence. Based on this observation, we define our global loss function
to consider the distance with negatively unlabeled data. To avoid false positive,
we use a weighted function. Our global loss function is:

Loss =
T∑

t=i

(

L(ci) +
∑

e′
k∈N(ci)

log(n(e′
k))

log(maxn(e′))
F ′(ve′

k
, vci)

2

)

(7)

where N(ci) is the sampled set of unlabeled entities which are excluded in
adjective-modified concept ci, but included in noun concept out of the adjective.
And n(e′) is the sum of the frequency of entity e′. Through this approach, we
can enhances the accuracy, as our empirical results confirm in Table 4 (precision
improves by 6.9%).

3.3 Finding Adjective Synonym

This section reports how distributed space can be used to detect semantic rela-
tionship between adjectives. In Fig. 1(c), “big city” is placed near “large city”,
“huge city”. We can observe that closest adjectives are all highly semantically
related. This suggests that using highly related adjectives as a cluster can aggre-
gate scattered observations of “big company” to “large company” or “huge
company”.

We can aggregate the closest pair at each iteration, until they converge to
synonym clusters, by adopting a bottom-up agglomerative hierarchical clustering
method [4]. Specifically, we compute a pairwise distance matrix using cosine
similarity in word embedding and use it for clustering: We can continue iterative
merges until the number of adjectives in one group is 4 or less.

Then, we combine the adjective set in cluster, i.e. (big, large, huge city), by
using the average score of synonyms, instead of the score of one adjective. As
shown in Table 4, we can show whether combining the statistical evidences from
similar adjectives can enhance the quality of the graded score prediction. This
average score indeed enhances the accuracy, as our empirical results confirm in
Table 4 (precision improves by 19.2%).
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4 Experiments

This section is organized to answer the following research questions respectively.

– RQ1: Some adjective can be used when people want to express objective
properties such as the size of the country. Therefore, we select some obvious
qualitative adjective and check the correlation with objective statistics to
show how our model captures such correlation.

– RQ2: Meanwhile, there exist non-measurable or subjective adjectives such as
great, valuable, or beautiful. We evaluate our model for these properties by
using human-made gold standard ordering.

– RQ3: We validate whether our model overcomes the limitation of explicit
models by extending prediction of P (e|c) to unseen objects.

4.1 RQ1: Interpreting Qualitative Adjective with Statistics

Some adjectives naturally correlate with objective statistics, such as big city with
statistics of population or area. We first demonstrate whether such correlation
confirms commonsense understanding of humans. We generalize our observation
to qualitative adjectives in Table 1, by using 8 field statistics. In these fields, we
show Spearman correlation between statistics and the graded scores calculated
by cosine similarity in word embedding.

In Table 1, we observe P (e|c) in KB baseline reflects human-perceived cor-
relation, but covers only a limited number of data. For example, KB baseline
grades “big city” only for 186 cities, but our model scores them for 278 cities.
Our model obtains high coverage, calculating the similarity of the entities that
cannot be extracted by specific pattern. The last column shows that our model
expands the coverage while preserving correlation.

Table 1. Spearman’s rho between the graded score and the statistics

Adjective-modified Statistics KB baseline Ours

concept type Correlation # of data Correlation # of data

Big city Population 0.705 186 0.706 278 (149%)

Land area 0.460 186 0.446 278 (149%)

Expensive city Big mac Index 0.630 54 0.648 70 (130%)

Cost of living 0.571 282 0.508 444 (157%)

Large country Population 0.651 119 0.741 191 (161%)

Land area 0.799 119 0.803 191 (161%)

Rich country GDP 0.690 120 0.690 169 (141%)

PPP GDP 0.717 120 0.708 169 (141%)
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(a) City (b) Country

Fig. 3. Correlations between adjectives and population/land area

We observed that the correlations between adjective and statistics are dif-
ferent depending on the combined concepts. As shown in Fig. 3, “large country”
is more highly correlated with population than land area, but “large city” is
more highly correlated with population than land area. The opposite meaning
of “large” is “ancient” or “dying” in city, but “tiny” in country. “dying” and
“ancient” are rarely used in country, and human tend to represent “small town”
for negative correlation word for population and land area not “tiny city”. The
use of “large city” correlates more with population than land area, while “large
country” correlates more with land area. This also confirms the human percep-
tion of considering countries such as Russia, China, or the US with large area as
big countries, while considering metropolis with high population as big cities.

4.2 RQ2: Comparing Correlation with Human-Made Gold-Standard

To evaluate our model in terms of correlation, we adopt the gold standard order-
ings made by human. Iwanari et al. [9] release evaluation dataset including 35
adjective-modified concepts and average 7 entities per each concept. They asked
multiple volunteers to order some entities set on attribute intensity expressed
by adjective. Then, they pick the ordering that achieved the best average Spear-
man’s correlation and use the ordering as gold standard. However, unlike our
English dataset, the model was built on Japanese corpus and evaluation set.
Because the domain of data we use is English, we excluded 16 specific concepts
related to Japanese, such as cartoon, alcohol, temple, corner store, and town.
Finally, we use ordering between 19 concepts and 134 entities for comparing our
model. Additionally, Iwanari et al. [9] translated the concept and adjective words
into English. However, the translated words are in less general form, we changed
the words to synonyms that are more frequently used. For example, we chose
the word “intelligent animal”, instead of “clever mammal” in dataset.

The experimental results are listed in Table 2. SVM and SVR refer to the
methods proposed by Iwanari et al. [9]. KB baseline refers to the pattern-based
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Table 2. Spearman’s rho against gold-standard ordering

Adj.concept Human KB baseline (coverage) SVM SVR Ours

Beautiful plant 0.767 0.866 (37.5%) 0.357 0.167 0.381

Valuable gemstone 0.682 0.782 (87.5%) 0.524 0.548 0.643

Popular sport 0.422 0.290 (75.0%) 0.381 −0.095 0.238

Intelligent animal 0.598 0.400 (66.7%) 0.143 0.029 0.600

Large animal 1.000 0.500 (50.0%) 0.771 0.886 0.600

Great food 0.639 0.058 (75.0%) 0.607 0.464 0.143

Beautiful instrument 0.583 0.257 (75.0%) 0.310 0.238 0.548

Easy language 0.845 0.750 (87.5%) 0.619 0.643 0.667

Slow language 0.840 0.100 (62.5%) 0.381 0.238 −0.167

Lovely animal 0.806 1.000 (37.5%) 0.548 0.595 0.738

Great vegetable 0.462 0.696 (75.0%) 0.524 0.476 0.429

Sweet fruit 0.729 0.783 (71.4%) 0.607 0.607 0.821

Great tool 0.772 0.300 (71.4%) 0.393 0.500 0.464

Good protein 0.662 0.900 (71.4%) 0.143 −0.286 0.964

Safe country 0.804 0.300 (100%) −0.200 0.000 0.500

Warm country 0.961 0.866 (60.0%) 0.700 0.700 1.000

Well-known brand 0.659 0.743 (87.5%) 0.619 0.286 0.900

Nice browser 0.856 0.600 (80.0%) −0.600 −0.600 0.429

Safe city 0.655 0.378 (100%) 0.357 0.250 0.762

Average 0.723 0.556 (72.2%) 0.378 0.297 0.561

method by the probability in Probase. While KB baseline has a coverage of only
72.2%, our model has not only 100% coverage, but also preserves precision.

We see that the correlation between our score and the gold standard ordering
is less than 0.4 for “popular sport”, “beautiful plant”, “popular sport”, “great
food”, and “slow language”. The reasons for this result are that the coverage at
extracted positive evidence is low or human’s agreement is inconsistent due to
its subjective property.

4.3 RQ3: Generalizing Beyond Implicit and Explicit Models

In this section, we evaluate further on how we predict P (e|c) for unseen pairs
during the training. Table 3 shows how we expand the observation made for four
adjective-modified concepts into 250 concepts.

More specifically, to validate our model for unobserved entities, we set some
P (e|c) to test set and estimate that probability. By Eq. 5, the probability P (e|c)
and cosine similarity between e and c are monotonically increasing. Therefore,
we evaluate the Spearman correlation of the cosine similarity and P (e|c) that
were not used in the training.
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Table 3. Datasets

Concept

Adjective-

modified

concept

Entity–

Adj.concept

pair

# of

data
37 250 498,007

Example

City,

Country,

Company,

Sport,

Movie

Big city,

Rich country,

Great sport,

Funny movie,

Big company

Big city-New York,

Great sport-Tennis,

Big company-Apple

Table 4. Experimental results

Model ρ

KB (5) 0.434

KB (10) 0.477

DS 0.484

KB+DS (5) 0.454

KB+DS (10) 0.461

Ours (Eq4) 0.469

Ours (Eq6) 0.535

Ours (Eq6+7) 0.572

Ours (Eq6+8) 0.641

Ours (Eq6+7+8) 0.682

For experiment, we split the entities which have the probability P (e|c) to 9/10
training set and 1/10 testing set. Because the distribution of P (e|c) is skewed,
random sampling selects mostly tail entities with low probability similar to each
other. Such sampling is inappropriate for comparing the correlation with the
actual and predicted ranking, as it contains mostly tail entities with tied ranks.
We thus sample more on head entities using stratified sampling, dividing sample
size n into 5 section by rank and select n

2i data from the highest rank (i = 1) to
lowest (i = 5).

We compare with KB and DS baselines, and consider its combination as well.
It is to show how each component technique we proposed contribute to overall
performance.

Baselines:

– KB baseline: KB baseline itself cannot be used for estimating missing
P (e|c), but we can extend by averaging the probability of the nearest 5 or 10
concepts, which we denote as KB(5) and KB(10) respectively.

– DS baseline: In DS baseline, we estimate P (e|c) by averaging the vector of
adjective and noun and computing the distance to this vector.

– KB + DS baseline: In KB+DS baseline, we estimate P (e|c) by averaging
the probability of 5 and 10 closest entities e′ in the word embedding, denoted
as KB + DS(5) and KB + DS(10).

Our model outperforms all these baselines. To show how we each equation
contributes to the overall performance, we denote the complete model as Ours
(Eq. 6+7+8) in the last line, which we compare with our model applying only
some of such equations.

5 Conclusions

This paper studied the problem of understanding adjective by predicting a
graded score for the given entity and adjective pair. Specifically, we train a
distributed space to reflect Probase probability as distance. Semantic similarity
with unseen objects is then used to predict missing Probase probability. Seman-
tic similarity between adjectives contributes to enhance recall by collapsing the
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scattered observations of an entity with synonymous adjectives. Our extensive
analysis using real-life data validates that we can predict adjective for unseen
entity with comparable quality to seen ones, and thus improves the coverage to
all adjective entity pairs.
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